Identifying Thresholds of Quality in Early Child Care and Education: A Non-Parametric Approach

Greg Welch & Ji Hoon Ryoo
Nebraska Center for Research on Children, Youth, Families and Schools
Overview

• Background
• Data Sources
• Analytic Approaches
 – General Additive Modeling
 – Spline Analyses
 – Framework for this project
• Examples
• Summary
Background

○ Led by CYFS Faculty Affiliates
 – Julia Torquati
 – Helen Raikes

○ Substantively speaking…
 ○ Evidence that better quality generally predicts more optimal child outcomes
Aims

• **Aim 1**: To determine whether there are *specific thresholds* of quality that predict children’s developmental outcomes

• **Aim 2**: To determine whether thresholds of quality vary as a function of:
 – (1) age of child in child care;
 – (2) ethnicity of teacher/provider;
 – (3) ethnic match/mismatch of teacher/provider and child;
 – (4) income level of child
Background

- Linear vs. Non-Linear models
 - Linear the norm
 - Implies relationship same across all points
 - Non-linear are necessary
 - The strength of association between predictors and outcomes varies across the measurement scale such that particular levels of quality are significantly more strongly associated with children’s development.
Early Head Start Sample

<table>
<thead>
<tr>
<th>Age (months)</th>
<th>Family Child Care</th>
<th>Center Care</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>151</td>
<td>372</td>
</tr>
<tr>
<td>24</td>
<td>159</td>
<td>416</td>
</tr>
<tr>
<td>36</td>
<td>134</td>
<td>500</td>
</tr>
<tr>
<td>60</td>
<td>80</td>
<td>1043</td>
</tr>
</tbody>
</table>
QUINCE Sample

- Children ages 20 months – 5 years
- Assessed fall and spring
 - T2 focus of this analysis

<table>
<thead>
<tr>
<th>Family Child Care</th>
<th>Center Care</th>
</tr>
</thead>
<tbody>
<tr>
<td>650</td>
<td>652</td>
</tr>
</tbody>
</table>
Analytic Approaches

• General Additive Modeling
 – Empirically driven
 – Non-parametric approach
 – Identify relationship between variables
 • Linear vs. Non-linear
 – Identify possible thresholds
 • Based on shape of observed relationship
Analytic Approaches

• Spline Models
 – Identify empirical thresholds obtained from GAM via the model comparison between linear and non-linear associations
 – Investigate the change of associations within each interval of quality of care classified by empirical thresholds
 – Predict associations based on the spline model
Introduction to GAM

• Generalized Additive Model (GAM)
 – Each term is estimated using a univariate smoother
 – The estimate explains how the dependent variable changes with the corresponding independent variables

\[\eta = s_0 + \sum_{i=1}^{p} s_i(X_i) \]

where \(s_i \) are smooth functions defines the additive component.

• The smoothers are estimated by using the backfitting algorithm and the local scoring algorithm
 – The algorithms are implemented in PROC GAM in SAS and gamm package in R
Spline Analyses

• For identification of thresholds, the following two models are compared

 Linear model \[Y_i = \beta_0 + \beta_1 \cdot X_i + e_i \]

 Spline model \[Y_i = \beta_0 + \beta_1 \cdot X_i + \beta_2 \cdot T_i^1 + \beta_3 \cdot T_i^2 + e_i \]

• To investigate the effect of moderator, the following two models are compared

 Spline model \[Y_i = \beta_0 + \beta_1 \cdot X_i + \beta_2 \cdot T_i^1 + \beta_3 \cdot T_i^2 + e_i \]

 Model with Moderator \[Y_i = \beta_0 + \beta_1 \cdot X_i + \beta_2 \cdot T_i^1 + \beta_3 \cdot T_i^2 + \sum_{k=1}^{K} C_i^k + e_i \]
Framework for Identifying Thresholds

• Thresholds were identified
 – Empirically via GAM
 – Based on a priori research/knowledge
Example 1

• Begin by implement GAM approach
 – Non-parametric approach to investigating the relationship between quality measures of child care (ITERS or ECERS, FDCRS, and CIS) and child outcomes

• Want to determine:
 – Relationship linear or non-linear?
 – If non-linear, are thresholds implied?
Example 1

- To examine the relationship between ITERS quality measure and sustained attention outcome measure at 14 month in the EHS sample
- Using PROC GAM in SAS

  ```
  proc gam data=Jihoon.ehs plots=components(clm);
  model b1v3catn = spline(T1ITSTTL)/
    anodev = refit method = gcv epsscore = 1e-6;
  output out = ehs14 p;
  run;
  ```
- It produces parameter estimates, estimated degree of freedom, and smoothing plot(s)
Example 1 – GAM Plot

- ITERS and Sustained Attention
Example 1 – SAS Output

The GAM Procedure
Dependent Variable: b1v3catn
Smoothing Model Component(s): spline(T1ITSTTL)

Summary of Input Data Set
Number of Observations 335
Number of Missing Observations 2666
Distribution Gaussian
Link Function Identity

Regression Model Analysis
Parameter Estimates

| Parameter | Estimate | Standard Error | t Value | Pr > |t| |
|-----------|----------|----------------|---------|-------|-----|
| Intercept | 5.15073 | 0.21544 | 23.91 | <.0001|
| Linear(T1ITSTTL) | -0.04984 | 0.04601 | -1.08 | 0.2795|

Smoothing Model Analysis
Analysis of Deviance

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Squares</th>
<th>Chi-Square</th>
<th>Pr > ChiSq</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spline(T1ITSTTL)</td>
<td>2.13902</td>
<td>8.274623</td>
<td>7.8755</td>
<td>0.0226</td>
</tr>
</tbody>
</table>
Example 1 – Spline Result

- Testing empirical thresholds - 3.3 and 5.0
 - $F_2=4.628$; p-value=0.010

<table>
<thead>
<tr>
<th>Line Segment</th>
<th>Estimate (slope)</th>
<th>Std Err</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>[0.0, 3.3]</td>
<td>0.35 (0.35)</td>
<td>0.219</td>
<td>0.111</td>
</tr>
<tr>
<td>[3.3, 5.0]</td>
<td>-0.767 (-0.417)</td>
<td>0.316</td>
<td>0.016*</td>
</tr>
<tr>
<td>[5.0, 7.0]</td>
<td>0.712 (0.295)</td>
<td>0.238</td>
<td>0.003**</td>
</tr>
</tbody>
</table>
Example 2 – GAM Plot

- ECERS-R and Howes Ladd conflict with teacher rating
Example 2 – Spline Results

- Comparing possible models
- Practical?

Fitted linear model vs. spline1 model

Fitted linear model vs. spline5 model
Example 3 – GAM Plot

- Bracken school readiness and ECERS-R
Example 3 – GAM Plot

- Bracken school readiness and ECERS-R
 - by Gender
- Gender significant (p-value=0.0002)
 - Does not significantly impact GAM result
Example 4 – GAM Plots

- ECERS-R & CIS and Howes Ladd aggressive composite
Example 4 – GAM Plots

- What if we look at the relationships separately?
 - The results are almost identical, which is a property of GAM
Example 4 – Spline Results

- Compare the spline model with the suggested thresholds with a linear model on both cases

![Linear1 model vs. spline1 model](image1)

![Linear2 model vs. spline2 model](image2)
Utility of the Approaches

• GAM excellent approach to identifying thresholds
 – No a priori knowledge necessary
 • Can be useful though
 – Does not provide for inferential statements

• Spline
 – Can use a priori and/or empirical information
 – Can make inferential statements
Thank You!

Questions?

For Additional Questions/Information

gwelch2@unl.edu
jryoo2@unl.edu